however, the amplitude was less pronounced. Mean CD34+ S-phase was 14.0% \pm 1.7% (S.D.). Interindividual differences in circadian variation in the S-phase of erythroid cells were observed. Therefore, no significant variation was demonstrated for the pooled S-phase of these cells, which had a high mean S-phase of 25.4% \pm 2.7% (S.D.).

1122 ORAL

FACTORS AFFECTING ADEQUACY OF SINGLE VS MULTIPLE APHERESIS FOR STEM CELL COLLECTION DURING MOBILIZATION FOR RESCUING PATIENTS AFTER HIGH DOSE CHEMOTHERAPY

G. Koumakis, J. Filis, M. Moraki, M. Vassilomanolakis, H. Hatzichristou, M. Kritsioti, K. Papanastasiou, V. Barbounis, S. Tsousis, M. Stamatellou, A. Ffremidis

BMT Unit, Hellenic Cancer Institute, St. Savas Hospital, Athens, Greece Thirty nine pts with malignancy were enrolled in a study of high dose chemotherapy and peripheral blood stem cell transplantation (PBSCT). Stem cells were harvested prior to PBSCT using (1) G-CSF 10 µg/Ug/d (2) high dose cytoxan 6 gr/m² (H.D CTX) + G-CSF (3) conventional chemo (C.CHE) + G-CSF or GM-CSF (4) G-CSF + GM-CSF with collection of a median of 4.3×10^8 /kg MNC (range 0.56–10.1) and 16.8 \times 10⁴/kg CFU-GM (range 1.8–55.2). Seven pts required more than a single apheresis and 10 pts (26%) didn't reach the optimum CFU-GM target ($>10 \times 10^8$ /kg) following the mobilization. Method of mobilization, nature of disease, age, BM infiltration, number of chemo cycles and RT premobolization, time of last chemo to mobilization were the factors been studied for the effect on blood stem cell collection. The factors identified those pts who achieved optimum CFU-GM collection included the lower number (<9) of chemo cycles and no extensive RT premobilization (Table I).

	Median no chemo cycles premobilization (days)			Premobilization RT	
	€ 6	6 ≤ 9	>9	yes	no
Median total MNC					
harvested (×10 ⁸ /kg)	4.3	6.11	2.73	1.81	4.85
Median total CFU-GM					
harvested (×104/kg)	15.9	24.2	8.5	3.74	19.65

Mobilization method, age, BM infiltration, disease and interval from last chemo cycle to mobilization did not affect the ability to collect CFU-GM numbers. Refinement to the protocol, in particular the use of growth factors, are currently under investigation.

1123 ORAL ABLATIVE CHEMOTHERAPY AND BMT/PSCT IN EARLY

ABLATIVE CHEMOTHERAPY AND BMT/PSCT IN EARLY RELAPSING OR MULTIFOCAL EWING SARCOMA. THE VALUE OF RADIOTHERAPY

H. Pape¹, B. Bannach¹, St. Burdach², W. Nürnberger², H. Jügens³

Clinic of Radiotherapy and Oncology, University of Düsseldorf, Germany

Pediatric Clinic of Haematology Oncology, University of Düsseldorf, Germany

³Pediatric Clinic of Haemotology Oncology, University of Münster, Germany Introduction: The fate of patients with early recurring or multifocal Ewing sarcoma is poor. Patients who relapse within the first 2 years have a 5 year event free survival probability of 2% (CESS 81). The prognosis drops down to a 5 year free survival probability of 0% (CESS 81) for patients with multifocal bone lesions. This poor prognostic Ewing sarcoma group was defined as eligible for ablative radio-chemotherapy and BMT/PSCT in first complete remission.

Materials and Method: Within the EICESS group 63 patients have been treated since 1987, 24 of them in Düsseldorf. All patients underwent remission induction chemotherapy with 4 courses (EVAIA) and 2 courses EVAIA simultaneously to hyperfractioned consolidation radiotherapy of all detectable involved compartments. The delivered target dose was 43.2 Gy (55 Gy including 12 Gy TBI), fractionated in 2 \times 1.6 Gy/day up to 22.4 Gy simultaneously to the 5th and 20.8 Gy to the 6th EVAIA course. Dose reduction was required to tissue tolerances. After clinical and histological proven CR patients underwent high dose chemotherapy (melphalan and etoposide) and TBI with a total dose of 12 Gy (2 \times 1.5 Gy) during day -7 to day -3. Lungs were shielded at 8 Gy in the beginning and later at 10 Gy followed by a rip cast boost to 12 Gy.

Results: 22/63 patient (35%) in the whole group and 10/23 pts. (43.5%) in Düsseldorf are alive. 13/23 pts. (56.5%) in Düsseldorf (3 DOC, 10 DOD). Due to multifocal bone lesions huge bone marrow volume have to be irradiated (7% to 48%, average 18%). Under the cover of G-CSF engraftment for WBC was on average 12.7 days (8–25), erythrocyte dependency on average 52 days (13 > 200) and thrombocyte dependency on average 50 days (12 > 200).

Conclusion: Myeloablative radio-chemotherapy with BMT/PSCT improves the prognosis of poor prognostic Ewing sarcoma. Tumour control still remains the main problem. Extensive radiotherapy of bone marrow immediately before BMT/PSCT does not lead to delay of WBC engraftment.

ORA
EVALUATION OF PATHOLOGICAL RESPONSE FOR BREAST
CANCER AFTER HIGH DOSE CHEMOTHERAPY (HDC) AND

AUTOLOGOUS STEM CELL SUPPORT

G. Gravis, J. Jacquemier, D. Blaise, D. Cowen, G. Houvenaeghel,
J. Camerlo, M. Resbeut, D. Maraninchi, P. Viens

Institut Paoli Calmettes, 13273 Marseille, France
Between 1981 and 1993, 20 of the 101 pts treated by HDC for breast cancer had mastectomy post treatment. 10 were treated for an inflammatory and 10 for a poor prognosis breast cancer. All of them received prior HDC an anthracyclin based chemotherapy. The overall clinical response rate to HDC was 90% (15/20 CR, 3/20 PR). 1 was in SD and 1 NE. 35% (7/20) were in pathological CR, all of them were in clinical CR. With the median follow-up of 23 [6–78] months 30% (6/20) relapse, 4 of them were in clinical CR post HDC, 1 in RP and 1 NE. Any of them were in pathological CR. Pts who received first conventional chemotherapy and HDC have 35% pathological CR. With more pts and longer follow-up, we want to define more precisely the clinical and pathological response to HDC. Actually, these results show us that it necessary to associated a local treatment to a systemic chemotherapy for high risk primary breast cancer.

ORAL
HIGH-DOSE THERAPY WITH HEMOPOIETIC STEM CELL
SUPPORT FOR HIGH RISK BREAST CANCER. A PILOT STUDY
IN 31 PATIENTS

R. Pérez-Carrión, J.F. Tomás, G. Pérez-Manga, J. Holgado, F. Sancho-Cuesta, M. González-Barón, A. Escudero, J.L. López-Lorenzo, J. López-Pascual, J.M. Fernández-Rañada

Clínica Ruber and Hospital de La Princesa, Madrid, Spain

From February 1992 to August 1994 31 women with high risk breast cancer received high dose cyclophosphamide (1.5 g/m 2 × 4 days), carboplatin (200 mg/m 2 × 4 days continuous infusion) and thiotepa (125 mg/m²/4 days, continuous infusion) as intensification treatment after conventional adjuvant chemotherapy. Median age was 43 years (27-61). Bone marrow was employed as source of stem-cell support in 22 patients and G-CSF mobilized peripheral stem cell in the rest 9 patients. G-CSF as a dose of 5 mcg/kg/day was administered in all bone marrow transplant patients until neutrophil engraftment. No toxic death occurred and major toxicities were as follows: neutropenic fever (31/31), grade II and III mucositis (5), grade II and III gastrointestinal toxicity (6), mild hemorrhagic cystitis (2), pulmonary embolism (1), post-transfusional hepatitis (1), grade II cardiac toxicity (1), pulmonary hemorrhage (1). Median days to reach neutrophil (>500/mm³) and platelet engraftment (> 25000) were 12 (9-30) and 18 (9-34) respectively. Median days of hospitalization were 24 (19-42), and for intravenous antibiotics 12 days (5-23). Red packed cells and platelets requirements were 4 (0-7) and 42 (6-141) respectively. There were no difference in terms of engraftment, days of antibiotics, transfusion requirements, use of antifungal therapy, time of hospitalization between patients that received bone marrow or peripheral blood stem cells as blood support. Nevertheless a trend for a lower value in all these variables was observed for peripheral stem cell. With a median follow-up of 12 months (3-31) four patients relapsed on days 113, 206, 248, 374 after transplant. Disease-free survival at 2 years is 72%. Three out of four relapsed patients died. Multiple metastatic sites at relapse occurred in 3 patients (liver: 2, skin: 1, pleural 2, pulmonary 2, nodes: 1). A poor response to salvage chemotherapy with a rapid progression and death occurred in three patients.